Artificial Intelligence Curriculum for Primary and Secondary Schools

Five Big Ideas

What it's about

The Five Big Ideas is a framework that defines educational standards and offers guidance to curriculum designers creating AI learning materials for elementary and secondary schools. It was developed by members of the AI4K12 initiative. While our AI curriculum is based on this document, it doesn’t explicitly emphasize the concept of data or clearly separate algorithmic approaches from machine learning (even though that’s how we typically explain AI to students). You can explore the structure of the Five Big Ideas below [full document available here].

Big Idea #1: Perception

Computers perceive the world using sensors. Perception is the extraction of meaning from sensory information using knowledge. The transformation from signal to meaning takes place in stages, with increasingly abstract features and higher level knowledge applied at each stage.

Sensing

1-A-I Living Things

1-A-II Computer Sensors

1-A-III Digital Encoding

Processing

1-B-I Sensing vs. Perception

1-B-II Feature Extraction

1-B-III Abstraction Pipeline: Language

1-B-IV Abstraction Pipeline: Vision

Domain Knowledge

1-C-I Types of Domain Knowledge

1-C-II Inclusivity

Big Idea #2: Representation & Reasoning

Intelligent systems work with a representation of the world and use it to reason. Representation is one of the fundamental challenges of intelligence—both natural and artificial. Computers construct representations based on data, and these representations are used by algorithms that generate new insights from what is already known. Even though intelligent systems can analyze complex problems, they do not think like humans.

Representation

2-A-I Abstraction

2-A-II Symbolic representations

2-A-III Data structures

2-A-IV Feature vectors

Search

2-B-I State spaces and operators

2-B-II Combinatorial search

Reasoning

2-C-I Types of reasoning problems

2-C-II Reasoning algorithms

Big Idea #3: Learning

Computers can learn from data. Machine learning is a form of statistical inference that identifies patterns in data. Many areas of AI have advanced significantly thanks to learning algorithms that generate new representations. For this approach to be successful, a large amount of data—usually provided by humans—is often required, although in some cases the machine can collect it on its own.

Nature of Learning

3-A-I Humans vs. machines

3-A-II Finding patterns in data

3-A-III Training a model

3-A-IV Constructing vs. using a reasoner

3-A-V Adjusting internal representations

3-A-VI Learning from experience

Neural networks

3-B-I Structure of a neural network

3-B-II Weight adjustment

Datasets

3-C-I Feature sets

3-C-II Large datasets

3-C-III Bias

Big Idea #4: Natural Interaction

Intelligent systems require many types of knowledge to interact with humans in a natural way. They must understand human languages, recognize facial expressions and emotions, and use cultural and social conventions to draw conclusions from observed behavior. All of these tasks are challenging. Today’s AI systems can use language, but their intelligence has not yet surpassed the level of child-like thinking.

Natural Language

4-A-I Structure of language

4-A-II Ambiguity of language

4-A-III Reasoning about text

4-A-IV Applications

Commonsense Reasoning

4-B-I

Understanding Emotion

4-C-I

Philosophy of Mind

4-D-I

Big Idea #5: Societal Impact

AI can have both positive and negative impacts on society. The technology is changing how we work, travel, communicate, and care for one another. However, we must be cautious about the potential negative consequences that may arise. For example, bias in the data used to train an AI system could lead to certain individuals being disadvantaged compared to others. That’s why it’s important to discuss the impact AI has on our society and to consider criteria for designing and deploying ethical AI systems.

Ethical AI

5-A-I Diversity of Interests and Disparate Impacts

5-A-II Ethical Design Criteria

5-A-III Practicing Ethical Design

AI & Culture

5-B-I AI in Daily Life

5-B-II Trust and Responsibility

AI & the Economy

5-C-I Impacts of AI on Sectors of Society

5-C-II Effects on Employment

AI for Social Good

5-D-I Democratization of AI Technology

5-D-II Using AI to Solve Societal Problems